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The motion of a phase interface is examined in the case of two semi-
infinite rods of the same material, one in the solid and the other in
the liquid state, The variation of temperature at the phase interface
is calculated.

A solution has been devised for determining the
position of the phase interface for two semiinfinite
rods of the same material, one being in a solid, the
other in a liquid state of aggregation. At time t =0
their ends are brought together at the point x = 0. The
temperature of the solid rod is assumed to be every-
where lower than the melting point, while that of the
liquid rod is higher, and it is assumed that there is
no convection in the liquid.
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Hlustration of the calculation scheme: 1) fusion
curve x = y(t); 2) tangent x = kt; 3) broken line
approximation,

The temperature at the boundary varies according
to some unknown law, reflecting the kinetics of the
crystallization process, and, as has been shown in a
number of recent papers [1-3], this may have a very
substantial influence on the end result.

For the case of an unchanging temperature front
and constant temperature at time zero of the solid
and liquid rods, the solution has been given by Schwarz
[6, 7). This method, however, does not permit cal-
culation of the temperature field or the velocity of the
boundary in the case of arbitrary initial conditions and
a nonzero temperature front.

. The problem of heat distribution may be written in
the following form:
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Condition (5) reflects the kinetics of the process and
may be written in closed form as (see [4])

o(T) = exp [— =a?/pmKT In %—] . (6)

¢
(T)

We divide the fusion curve y{t) into a number of
sections by straight lines parallel to the x axis, and in
each section we draw a straight line as an approxima-
tion of the curve (see figure). In the first section this
will be the tangent (curve 2), and in the others it will
be the broken line 3 oscillating about curve 1. it then
follows from (5) that in section tpth4+s the temperature
at the crystallization front will be constant, though
varying, of course, as we pass to the next section,

Therefore, to determine the temperature field in
each medium at the n-th step we must solve the prob-
lem of heat distribution in a semi-infinite rod whose
end moves according to a linear law y = knt and whose
temperature is held constant.

We will determine the velocity k frem condition (4),
which for the (n + 1)-th step will have the form
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We introduce the new variables

(”(x, 1) =u" (x, 1) —uy.

u® (x, ) —uy.
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Equation (1) and conditions (2)~(5) may be written,
respectively, in the form
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Later we will use Green's method, the applica-
tion of which to equations of parabolic type was proved
in {8, 9].

We introduce the operators
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where D is the region bounded by the characteristics

(t = const) and by the curves representing the equations
of motion of the ends of the section; C is the boundary
of this region.

If we assume that
u=ux 1)

and

v=GY(x, £, & )= —;i—hexp[ ﬂ—],
2V—:a, (t—n1) 4a] (t—m1)
then, taking into account that one end of the section

is removed to infinity, while at the other end we have
condition (8f), the basic integral formula may be writ-
ten in the form [5]

*We note that in the case of the rod melting through,
condition (4') is written somewhat differently:
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where w¥ = A;/Lpy, % = Ay/Lpy.
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In order to solve the boundary value problem, we
must eliminate the term 85(2)/8.5. For this purpose we
first replace v in (7) by the function vy,

o =G, t, & 1) =

1
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where x, is the abscissa of some point external to the
region D under examination. Then, taking into account
our boundary conditions for the liquid rod, we may
write (7) in the form
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where f(x, t) is an arbitrary multiplier whose form is
not yet known. We subtract (9) from (8) and require
that

dti=0, (9}

Gt = G lemee — fx, GI leie == 0.

Then
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From the condition G(*)|¢=; = 0 it follows that

_E_—E’):i)__} =f(/\“ [)e\(pli_

o 8 }
405 (t—=

.

exp | — 3 ,
P t day ( —1)

from which, taking logarithms and after some trans-

formations we obtain

2ai(t—=)Inf(x, 1) . x+x
X — X ‘ 2

(12)
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Equation (12) is the equation of a straight line in the
coordinates £ and 7. Comparing it with the equation
¢ = kT of this line, we can make them coincide by
choice of f(x, t) and x;. From this it follows that at
the end of a semi-infinite section moving according
to the law £ =k, the function G(®)(x, t, £,7) =

Thus, we obtain

Fix, ) =exp [ wx x k] 13)

2

As x; we choose the point with symmetrical x relative
to the same line £ = k7, i.e,, x,= 2kt — x. Hence

we have the required equality G(* )| g=kr = 0. Then
(11) is transformed to
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Expression (14) satisfies L(u) = 0 with respect to the
variables x, t and M(v) with respect to £, 7; it may
readily be seen that it is the Green's function of our
problem.

At the n-th section for each of the rods we have
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Carrying out the appropriate transformations and
taking into account (14) and the remarks made above,
we obtain the temperature distribution in the rods at
each section in the form
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and the values of the derivatives when x = k,t are
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Substituting (16) into (4) with values t = tn (ty is the

limiting value of time for the given step), we determine

the velocity kp4.; at the (n + 1)-th step.
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Time at each step is reckoned from zero, while
the coordinate origin is located at the boundary of the
two media. This is done purely for convenience of
calculation, and of course, the essence of the method
and the final result are not affected. The thickness of
the solidified layer may easily be found from (B).

At the first step we obtain the velocity value from
(5) by substituting a value of the temperature front
equal to ug = ¢{1)(0).

Thus the problem is completely solved by the meth-
od described.

Estimate of convergence. By replacing a section of
the true curve by the tangent to it, we depart some~
what from the true curve during time At. In calculating
the value of the derivative at the new point we intro-
duce some error due to the difference between the
computed and the true ordinates. To this error is
added the fresh error from substituting a straight
line, and so on. It is therefore appropriate to con-
sider the matter of convergence of the process.

It may be shown that the larger the slope of the
line tg @ = k (see fig. ), i.e., the further it is above
the true curve, the smaller the slope of the approxi-
mation line at the following step, which will thus draw
closer to our curve, A negative error is even possible.
In this case the point of intersection x = kp_t and t =
= tp-y (the point a in the figure) will be below the
curve x = y(t), which will entail an increase of the
slope of the next straight line section at the next stage,
and therefore draw it closer to the fusion curve. These
circumstances follow from (4a) if, as k increases,
the quantity au(l)/axlx_knt decreases, i.e, 8/8k[8u(1)/
/8%Ix=k,t] < 0, while du{d/8x|x=kpt mcreases i.e,

a/ ak[Bu!(IZ )/ axlx_knt] > 0. To prove this we dlfferentlate
(16) with respect to k, after again writing (5%*) in the
form
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Both terms are negative:
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Therefore,
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or, making the substitution

(bt — B)/20, V' =2,
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0 [ ou ! G
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from which it is easily seen that

0 | uf |
&“[ Cr T

which was to be proved.

Since the choice of step size with respect to time
is arbitrary, the calculation may be carried out with
any required degree of accuracy.
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NOTATION

u(j)(x, t)) temperature of rod (in j =1, 2, 1 refers ro the solid
phase and 2 to the liquid; ug) fusion temperature, “C: y(t)) phase
interface; Ajs Pj L) thermal conductivity, density, specific heat,
and heat of fusion of the medium, respectively; azj = Aj/ejpji g =
= Aj/Lpy;-c) a constant of the given substance; p(t)) a factor taking
account of the mobility of molecules of the liquid from which the
crystalline part is formed; o) specific linear energy at the crystal-
melt interface; k) Boltzmann constant; m) number of molecules
forming unit surface of the crystal face; T) phase equilibrium temp-
erature, ‘K; T) temperature at the boundary, K.
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